skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Tongyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We introduce a reflection-mode diffraction tomography technique that enables the simultaneous recovery of forward- and backward-scattering information for high-resolution 3D refractive index reconstruction. Our technique works by imaging a sample on a highly reflective substrate and employing a multiple-scattering model and a reconstruction algorithm. It combines the modified Born series as the forward model, Bloch and perfect electric conductor boundary conditions to handle oblique incidence and substrate reflections, and the adjoint method for efficient gradient computation in solving the inverse-scattering problem. We validate the technique through simulations and experiments, achieving accurate reconstructions in samples with high refractive index contrasts and complex geometries. Forward scattering captures smooth axial features, while backward scattering reveals complementary interfacial details. Experimental results on dual-layer resolution targets, 3D randomly distributed beads, phase structures obscured by highly scattering fibers, fixed breast cancer cells, and fixedC. elegansdemonstrate its robustness and versatility. This technique holds promise for applications in semiconductor metrology and biomedical imaging. 
    more » « less